近年來(lái),由于三維制造工藝和優(yōu)化技術(shù)的進(jìn)步,定制特性的機(jī)械材料設(shè)計(jì)引起了極大的興趣。晶格結(jié)構(gòu)因其高強(qiáng)度–重量比、出色的能量吸收能力和卓越的結(jié)構(gòu)穩(wěn)定性,在航空航天、汽車(chē)、生物醫(yī)學(xué)和能源系統(tǒng)等領(lǐng)域扮演著不可或缺的角色。
然而,實(shí)現(xiàn)具有多種期望力學(xué)性能的最優(yōu)晶格結(jié)構(gòu)的系統(tǒng)設(shè)計(jì)仍然是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。傳統(tǒng)的設(shè)計(jì)方法依賴(lài)于試錯(cuò)或直覺(jué),可能會(huì)耗時(shí)、昂貴,而且可能不能保證最佳性能。
制造、有限元分析和優(yōu)化技術(shù)的最新進(jìn)展擴(kuò)展了超材料設(shè)計(jì)的可能性,包括各向同性和拉脹結(jié)構(gòu),因其獨(dú)特的變形機(jī)制和在不同載荷下的一致行為而被用于能量吸收等應(yīng)用。然而,實(shí)現(xiàn)多個(gè)性質(zhì)的同時(shí)控制,如最佳的各向同性和輔助特性等,仍然具有挑戰(zhàn)性。
![超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化 超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化](http://www.xiubac.cn/wp-content/themes/justnews/themer/assets/images/lazy.png)
Fig. 3 Convergence of the multiobjective optimization process.
來(lái)自加州大學(xué)伯克利分校機(jī)械工程系激光熱實(shí)驗(yàn)室的Timon Meier等,采用全自動(dòng)多目標(biāo)設(shè)計(jì)優(yōu)化方法,利用遺傳算法優(yōu)化框架,設(shè)計(jì)出了具有定制彈性行為的晶格結(jié)構(gòu)。
![超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化 超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化](http://www.xiubac.cn/wp-content/themes/justnews/themer/assets/images/lazy.png)
他們介紹了一種系統(tǒng)的設(shè)計(jì)方法,將模擬、有限元分析、遺傳算法和優(yōu)化結(jié)合起來(lái),用于創(chuàng)建具有定制力學(xué)性能的晶格結(jié)構(gòu)。通過(guò)戰(zhàn)略性地排列8種明顯不是各向同性也不是輔助的單位單元狀態(tài),控制了5×5×5立方對(duì)稱(chēng)晶格結(jié)構(gòu)中的剛度張量。
![超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化 超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化](http://www.xiubac.cn/wp-content/themes/justnews/themer/assets/images/lazy.png)
這種設(shè)計(jì)選擇產(chǎn)生了一個(gè)大的違反直覺(jué)的組合設(shè)計(jì)空間,為實(shí)現(xiàn)所需的機(jī)械性能提供了靈活性。超材料的多光子光刻制造和實(shí)驗(yàn)表征突顯了其現(xiàn)實(shí)應(yīng)用,并證實(shí)了理論數(shù)據(jù)與實(shí)驗(yàn)數(shù)據(jù)之間的密切關(guān)聯(lián)。
![超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化 超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化](http://www.xiubac.cn/wp-content/themes/justnews/themer/assets/images/lazy.png)
Fig. 6 Mechanical testing of structures.
作者的方法集成了自動(dòng)化設(shè)計(jì)、有限元分析和優(yōu)化與制造,以及實(shí)驗(yàn)表征,以驗(yàn)證最優(yōu)結(jié)構(gòu),本方法為工程師和研究人員提供了一個(gè)有價(jià)值的工具,用于創(chuàng)建具有定制的力學(xué)性能的晶格結(jié)構(gòu)。該文近期發(fā)布于npj?Computational Materials?10:?3 (2023)。
![超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化 超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化](http://www.xiubac.cn/wp-content/themes/justnews/themer/assets/images/lazy.png)
Fig. 7 Experimental compression test data of the optimal structure is presented, along with video captures and a comparison to?theoretical FEA results.
Editorial Summary
The design of mechanical materials with tailored properties has been subject of significant interest in recent years, driven by advancements in three-dimensional manufacturing processes and optimization techniques. Lattice structures, known for their high strength-to-weight ratio, energy absorption capabilities, and structural stability, play an indispensable role in aerospace, automotive, biomedical, and energy systems.?
![超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化 超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化](http://www.xiubac.cn/wp-content/themes/justnews/themer/assets/images/lazy.png)
Fig. 8 Plot illustrating the mechanical compression response of the optimum structure, depicting the relationship between reaction?force and maximum principal stress.
However, achieving systematic design of optimal lattice structures with multiple desired mechanical properties remains a challenging task. Conventional design methods relying on trial and error, or intuition can be time-consuming, costly, and may not guarantee optimal performance. Recent advancements in manufacturing, finite element analysis (FEA), and optimization techniques have expanded the design possibilities for metamaterials, including isotropic and auxetic structures, known for applications like energy absorption due to their unique deformation mechanism and consistent behavior under varying loads. However, achieving simultaneous control of multiple properties, such as optimal isotropic and auxetic characteristics, remains challenging.?
![超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化 超材料理論設(shè)計(jì):力學(xué)性能優(yōu)異化](http://www.xiubac.cn/wp-content/themes/justnews/themer/assets/images/lazy.png)
Fig. 9 Directional stiffness map, illustrating the properties of monolithic structures and the optimal structure obtained through the?optimization process.
Timon Meier et al. from the Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, addressed this challenge by employing a fully automated multi-objective design optimization approach using a genetic algorithm optimization framework. In the study, they introduced a systematic design method that combines modeling, FEA, genetic algorithms, and optimization to create lattice structures with customized mechanical properties. Through strategically arranging eight distinctly neither isotropic nor auxetic unit cell states, the stiffness tensor in a 5?×?5?×?5 cubic symmetric lattice structure was controlled. This design choice results in a large counterintuitive combinatorial design space, providing flexibility in achieving desired mechanical properties.?
The application of Multiphoton lithography fabrication (MPL) and experimental characterization of the optimized metamaterial highlights a practical real-world use and confirms the close correlation between theoretical and experimental data. The comprehensive methodology integrates automated design, FEA, and optimization with MPL fabrication, and experimental characterization to validate the optimal structure, offering engineers and researchers with a valuable tool for creating lattice structures with customized mechanical properties.?This?article was recently?published in?npj?Computational Materials?10:?3?(2023).
原文Abstract及其翻譯
Obtaining auxetic and isotropic metamaterials in counterintuitive design spaces: an automated optimization approach and experimental characterization (在反直覺(jué)設(shè)計(jì)空間中獲得拉脹和各向同性超材料:一種自動(dòng)優(yōu)化方法和實(shí)驗(yàn)表征)
Timon Meier, Runxuan Li, Stefanos Mavrikos, Brian Blankenship, Zacharias Vangelatos, M. Erden Yildizdag & Costas P. Grigoropoulos
Abstract
Recent advancements in manufacturing, finite element analysis (FEA), and optimization techniques have expanded the design possibilities for metamaterials, including isotropic and auxetic structures, known for applications like energy absorption due to their unique deformation mechanism and consistent behavior under varying loads. However, achieving simultaneous control of multiple properties, such as optimal isotropic and auxetic characteristics, remains challenging.
This paper introduces a systematic design approach that combines modeling, FEA, genetic algorithm, and optimization to create tailored mechanical behavior in metamaterials. Through strategically arranging 8 distinct neither isotropic nor auxetic unit cell states, the stiffness tensor in a 5?×?5?×?5 cubic symmetric lattice structure is controlled. Employing the NSGA-II genetic algorithm and automated modeling, we yield metamaterial lattice structures possessing both desired isotropic and auxetic properties. Multiphoton lithography fabrication and experimental characterization of the optimized metamaterial highlights a practical real-world use and confirms the close correlation between theoretical and experimental data.
摘要?
制造、有限元分析(FEA)和優(yōu)化技術(shù)的最新進(jìn)展擴(kuò)展了超材料設(shè)計(jì)的可能性,包括各向同性和拉脹結(jié)構(gòu),其獨(dú)特的變形機(jī)制和在不同載荷下的一致行為而被用于能量吸收等應(yīng)用。然而,實(shí)現(xiàn)多個(gè)性質(zhì)的同時(shí)調(diào)控,如最佳的各向同性和拉脹特性,仍然具有挑戰(zhàn)性。
本文介紹了一種系統(tǒng)的設(shè)計(jì)方法,將模擬、有限元分析、遺傳算法和優(yōu)化結(jié)合起來(lái),以在超材料中創(chuàng)造定制的機(jī)械行為。通過(guò)戰(zhàn)略性地排列8種明顯不是各向同性也不是拉脹元胞態(tài),控制了5×5×5立方對(duì)稱(chēng)晶格結(jié)構(gòu)中的剛度張量。利用NSGA-II遺傳算法和自動(dòng)化模擬,我們得到了具有期望的各向同性和拉脹性能的超材料晶格結(jié)構(gòu)。優(yōu)秀超材料的多光子光刻制造和實(shí)驗(yàn)表征突顯了其現(xiàn)實(shí)應(yīng)用,并證實(shí)了理論數(shù)據(jù)與實(shí)驗(yàn)數(shù)據(jù)之間的密切關(guān)聯(lián)。
原創(chuàng)文章,作者:計(jì)算搬磚工程師,如若轉(zhuǎn)載,請(qǐng)注明來(lái)源華算科技,注明出處:http://www.xiubac.cn/index.php/2024/02/05/40b56de980/